Siirry suoraan sisältöön

Datan analysointi (4 op)

Toteutuksen tunnus: TTIW0300-3002

Toteutuksen perustiedot


Ilmoittautumisaika
03.08.2020 - 30.08.2020
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
02.11.2020 - 31.12.2020
Toteutus on päättynyt.
Opintopistemäärä
4 op
Lähiosuus
0 op
Virtuaaliosuus
4 op
Toteutustapa
Etäopetus
Yksikkö
Teknologiayksikkö
Opetuskielet
suomi
Paikat
0 - 60
Opettajat
Tuomas Huopana
Vastuuopettaja
Tuomas Huopana
Ryhmät
ZJA20STIDA
Avoin amk, tekniikka, ICT, Data-analytiikka ja tekoäly
Opintojakso
TTIW0300

Oppimateriaalit

Materiaali harjoitustehtäviä ja opiskeltavia asiasisältöjä varten jaetaan kurssin aikana. Kurssilla hyödynnetään Anaconda ohjelmistoa (Python 3.7-versio): https://www.anaconda.com/download/

Arviointiasteikko

0-5

Toteutuksen valinnaiset suoritustavat

Hyväksilukemisen menettelytavat kuvataan tutkintosäännössä ja opinto-oppaassa. Opintojakson opettaja antaa lisätietoa mahdollisista opintojakson erityiskäytänteistä.

Lisätiedot

Arvosana määräytyy alla olevien osaamistasojen mukaisesti:

Erinomainen 5: Opiskelija tunnistaa data-analytiikan tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa data-analytiikan yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa datan analysointi tehtävissä. Hän osaa kriittisesti perustella ja valita oikeat tekniikat datan analysoinnissa riippumatta analysoitavasta datasta ja osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Kiitettevä 4: Opiskelija tunnistaa data-analytiikan tuomat hyödyt digitalisaation aikakautena. Opiskelija osaa data-analytiikan yleisimmi käytetyt tekniikat ja osaa laajasti perustella käytettyjen tekniikoiden käytön erilaisissa datan analysointi tehtävissä. Hän osaa monipuolisesti perustella ja valita oikeat tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida perusteellisesti toteutuksensa ja perustella sen kehittämistä.

Hyvä 3: Opiskelija tiedostaa data-analytiikan hyödyt digitalisaation aikakautena. Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat erilaisissa datan analysointi tehtävissä. Hän osaa perustella ja valita tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida toteutuksensa ja perustella sen kehittämistä.

Tyydyttävä 2: Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat datan analysointi tehtävissä. Hän osaa valita tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida pintapuolisesti toteutuksensa.

Välttävä 1: Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat datan analysointi tehtävissä. Hän osaa soveltaa yleisimpiä tekniikoita datan analysoinnissa. Lisäksi opiskelija osaa arvioida suppeasti toteutuksensa.

Hylätty 0: Opiskelija ei hallitse aihealuetta.

Harjoittelu- ja työelämäyhteistyö

Kurssin sisältö pyritään kytkemään työelämässä esiintyviin ongelmiin.

Virtuaaliosuus

4

Opiskelijan ajankäyttö ja kuormitus

Yhden opintopisteen työmäärä vastaa 27 tunnin opiskelutyötä. Yhteensä opiskelutyömäärä (4 op.) kurssilla on 108 tuntia.

Arviointikriteerit, tyydyttävä (1)

Välttävä 1: Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat datananalysointi tehtävissä. Hän osaa soveltaa yleisimpiä tekniikoita datan analysoinnissa. Lisäksi opiskelija osaa arvioida suppeasti toteutuksensa.


Tyydyttävä 2: Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat datan analysointitehtävissä. Hän osaa valita tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida pintapuolisesti toteutuksensa.

Arviointikriteerit, hyvä (3)

Hyvä 3: Opiskelija tunnistaa data-analytiikan hyödyt Big datan hyödyntämisessä ja digitalisaation aikakautena. Opiskelija tietää data-analytiikan yleisimmin käytetyt tekniikat erilaisissa datan analysointi tehtävissä. Hän osaa perustella ja valita tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida toteutuksensa ja perustella sen kehittämistä.


Kiitettevä 4: Opiskelija tunnistaa data-analytiikan hyödyt Big datan hyödyntämisessä ja digitalisaation aikakautena. Opiskelija osaa data-analytiikan yleisimmin käytetyt tekniikat ja osaa laajasti perustella käytettyjen tekniikoiden käytön erilaisissa datan analysointi tehtävissä. Hän osaa monipuolisesti perustella ja valita oikeat tekniikat datan analysoinnissa ja hän osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida perusteellisesti toteutuksensa ja perustella sen kehittämistä.

Arviointikriteerit, kiitettävä (5)

Erinomainen 5: Opiskelija tunnistaa data-analytiikan hyödyt Big datan hyödyntämisessä ja digitalisaation aikakautena. Opiskelija osaa data-analytiikan yleisimmin käytetyt tekniikat ja osaa kriittisesti perustella käytettyjen tekniikoiden käytön erilaisissa datan analysointi tehtävissä. Hän osaa kriittisesti perustella ja valita oikeat tekniikat datan analysoinnissa riippumatta analysoitavasta datasta ja osaa soveltaa teknistä osaamistaan käytännössä. Lisäksi opiskelija osaa arvioida kriittisesti toteutuksensa ja perustella sen kehittämistä.

Tenttien ajankohdat ja uusintamahdollisuudet

Kurssi arvioidaan palautettujen harjoitustehtävien avulla.

Opetuskieli

fi

Opetusmenetelmät

Virtuaalinen opiskelu sisältäen harjoitustehtävien tekemisen sekä niihin liittyvään sisältöön perehtymisen.

Aika ja paikka

Opintojakso toteutetaan vuonna 2020 viikkojen 44 - 51 välisenä aikana.

Opintopistemäärä

4

Esitietovaatimukset

Koskee tutkinto-opiskelijoita: Opiskelijalla täytyy olla perusosaaminen Python-ohjelmoinnista.

Sisältö

Data-analytiikan
• Perusteet
• Avoin data ja Mydata
• Yleisimmät menetelmät
• Menetelmien soveltaminen käytännössä

Tavoitteet

Opiskelija ymmärtää data-analytiikan merkityksen digitalisoituvassa toimintaympäristössä ja Big datan jalostamisessa hyödynnettävään muotoon. Opiskelija tietää yleisimmät data-analytiikan menetelmät ja osaa soveltaa niitä käytännössä olemassa olevaan dataan.

Siirry alkuun